Molecular mechanisms of TRPV4-mediated neural signaling.
摘要:
In signal transduction of metazoan cells, ion channels of the family of transient receptor potential (TRP) have been identified to respond to diverse external and internal stimuli, among them osmotic stimuli. This review highlights a specific member of the TRPV subfamily, the TRPV4 channel, initially named vanilloid-receptor related osmotically activated channel (VR-OAC) or OTRPC4. In a striking example of evolutionary conservation of function, mammalian TRPV4 has been found to rescue osmo- and mechanosensory deficits of the TRPV mutant strain osm-9 in Caenorhabditis elegans. This is an astounding finding given the <26% orthology between OSM-9 and TRPV4 proteins. Here, recent findings pertaining to TRPV4's mechano- and osmosensory function in endothelia, in the alveolar unit of the lung, and in intestinal sensory innervation are reviewed, namely, transduction of mechanical shear stress in endothelia, maintenance of alveolar integrity on the endothelial side, and intestinal mechanosensation of noxious stimuli by dorsal root ganglion sensory neurons, which can be potently sensitized to mechanical stimuli by activation of the proteinase-activated receptor 2 (PAR-2), in a strictly TRPV4-dependent manner.
展开
关键词:
TRP TRPV osmotic stimuli osmotransduction mechanical stimuli mechanotransduction sensory neuron intestinal innervation endothelia shear stress lung alveolar edema proteinase‐activated receptor 2 (PAR2)
DOI:
10.1196/annals.1418.012
被引量:
年份:
2010



























通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!