Tuning P450 Enzymes as Oxidation Catalysts

来自 ACS

阅读量:

179

作者:

R Fasan

展开

摘要:

The development of catalytic systems for the controlled oxidation of C–H bonds remains a highly sought-after goal in chemistry owing to the great utility of such transformation toward expediting the synthesis and functionalization of organic molecules. Cytochrome P450 monooxygenases are the catalysts of choice in the biological world for mediating the oxidation of sp3 and sp2 C–H bonds with a high degree of chemo-, regio-, and stereoselectivity and in a wide array of compounds of varying complexity. The efficiency of these enzymes, compared with chemical methods, to catalyze the insertion of oxygen into unactivated C–H bonds under mild reaction conditions has sparked interest among researchers toward investigating and exploiting P450s for a variety of synthetic applications. Realizing the synthetic potential of these enzymes, however, depends upon the availability of effective strategies to tune the reactivity of natural P450s to obtain viable oxidation catalysts for the desired transformation. This review describes recent efforts in this area involving the use of protein engineering, substrate engineering, guest/host activation, and functional screening strategies. The development of engineered P450s for drug metabolite production and emerging methodologies involving the integration of P450-catalyzed transformations in preparative-scale chemoenzymatic syntheses are also presented. Key challenges that need to be addressed to capitalize on P450 oxidation catalysis for chemical synthesis are discussed.

展开

DOI:

10.1021/cs300001x

被引量:

104

年份:

2012

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用