Initial-value problem of the one-dimensional wave propagation in a homogeneous random medium

阅读量:

24

作者:

HisanaoOguraJun-IchiNakayama

展开

摘要:

The initial-value problem of the one-dimensional wave propagation in a homogeneous random medium is treated by means of the "Laplace transform," based again on a group-theoretic consideration introduced in the preceding paper. We first define the "Fourier transform" of a random process regarded as a function on the translation group associated with the homogeneity. The inverse "Fourier transform" then gives a general representation of a nonstationary random process generated by a stationary process. Similarly, we define the "Laplace transform" of a random process vanishing on the negative coordinate axis as well as the "Laplace transform" of its derivatives. The one-dimensional wave equation together with the random initial values can be directly treated by means of the "Laplace-transform" technique and is solved approximately in two Gaussian cases where the random media are represented by the well-known O-U (Ornstein-Uhlenbeck) process and by the Z<sub>0</sub> process having zero spec

展开

DOI:

10.1103/PhysRevA.11.957

被引量:

19

年份:

1975

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2000
被引量:4

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用