Molecular cloning of a divinyl ether synthase - Identification as a CYP74 cytochrome P-450
摘要:
Lipoxygenase-derived fatty acid hydroperoxides are metabolized by CYP74 cytochrome P-450s to various oxylipins that play important roles in plant growth and development. Here, we report the characterization of a Lycopersicon esculentum (tomato) cDNA whose predicted amino acid sequence defines a previously unidentified P-450 subfamily (CYP74D). The recombinant protein, expressed in Escherichia coli, displayed spectral properties of a P-450. The enzyme efficiently metabolized 9-hydroperoxy linoleic acid and 9-hydroperoxy linolenic acid but was poorly active against the corresponding 13-hydroperoxides. Incubation of recombinant CYP74D with 9-hydroperoxy linoleic acid and 9-hydroperoxy linolenic acid yielded divinyl ether fatty acids (colneleic acid and colnelenic acid, respectively), which have been implicated as plant anti-fungal toxins. This represents the first identification of a cDNA encoding a divinyl ether synthase and establishment of the enzyme as a CYP74 P-450. Genomic DNA blot analysis revealed the existence of a single divinyl ether synthase gene located on chromosome one of tomato. In tomato seedlings, root tissue was the major site of both divinyl ether synthase mRNA accumulation and enzyme activity. These results indicate that developmental expression of the divinyl ether synthase gene is an important determinant of the tissue specific synthesis of divinyl ether oxylipins.
展开
关键词:
Cytochrome P-450 Oxidoreductases Tomatoes DNA, Complementary RNA, Messenger 细胞色素P-450 氧化还原酶类 番茄
DOI:
10.1074/jbc.M008964200
被引量:
年份:
2001
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!