Novel bifunctional periodic mesoporous organosilicas, BPMOs: synthesis, characterization, properties and in-situ selective hydroboration-alcoholysis reactions of functional groups.

来自 ACS

阅读量:

73

作者:

T AsefaM KrukMJ MaclachlanN CoombsH GrondeyM JaroniecGA Ozin

展开

摘要:

A new class of bifunctional periodic mesoporous organosilicas (BPMOs) containing two differently bonded organic moieties in a mesoporous host has been synthesized and characterized. By incorporating bridge-bonded ethylene groups into the walls and terminally bonded vinyl groups protruding into the channel space, both the chemistry and physical properties of the resulting BPMO could be modified. The materials have periodic mesoporous structures in which the bridging ethylene plays a structural and mechanical role and the vinyl groups are readily accessible for chemical transformations. The vinyl groups in the material underwent hydroboration with BH(3).THF and the resulting organoborane in the BPMO was quantitatively transformed into an alcohol using either H(2)O(2)/NaOH or NaBO(3).4H(2)O. The materials retained ordered structures after subsequent in situ reactions with largely unchanged pore volumes, specific surface areas and pore size distributions. Other organic functionalized BPMO materials may be synthesized in a similar manner or by further functionalizing the resulting borylated or alcohol functionalized BPMO materials. The thermal properties of the BPMO materials have also been investigated and are compared to those of the periodic mesoporous organosilica (PMO) materials. Noteworthy thermal events concern intrachannel reactions between residual silanols or atmospheric oxygen and organics in BPMOs. They begin around 300 degrees C and smoothly interconvert bridging ethylene to terminal vinyl groups and terminal vinyl to gaseous ethene and ethane, ultimately producing periodic mesoporous silica at 900 degrees C that exhibits good structural order and a unit-cell size decreased relative to that of the parent BPMO.

展开

DOI:

10.1021/ja0037320

被引量:

520

年份:

2001

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2010
被引量:66

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用