Resveratrol-mediated apoptosis of hodgkin lymphoma cells involves SIRT1 inhibition and FOXO3a hyperacetylation

来自 Wiley

阅读量:

20

作者:

RaffaeleFrazziRiccardoValliIoneTamagniniBrunoCasaliNorbertLatruffe

展开

摘要:

Resveratrol (RSV), a plant-derived stilbene, induces cell death in Hodgkin lymphoma (HL)-derived L-428 cells in a dose-dependent manner (IC50 = 27 μM, trypan blue exclusion assay). At a lower range (25 μM), RSV treatment for 48 hr causes arrest in the S-phase of the cell cycle, while at a higher concentration range (50 μM), apoptosis can be detected, with activation of caspase-3. The histone/protein deacetylase SIRT1 has been described as a putative target of RSV action in other model systems, even though its role in cancer cells is still controversial. Here we show that RSV, at both concentration ranges, leads to a marked increase in p53, while a decrease of SIRT1 expression level, as well as enzyme activity, only occurred at the higher concentration range. Concomitantly, however, treatments at both concentration ranges resulted in a marked increase in K373-acetylated p53 and lysine-acetylated FOXO3a. Immunohistochemical stainings of human lymph nodes show a preferential distribution of SIRT1 in the germinal center of the follicles while the mantle zone shows nearly no staining to few positive cells. The classical HL-affected lymph nodes show a strong positivity of the diagnostic Hodgkin Reed-Sternberg cells. Notably, both the HL-derived cell lines and the Hodgkin Reed-Sternberg cells of the affected lymph nodes derive from germinal center-derived B cells. The study of SIRT1 distribution and expression on a larger number of biopsies might disclose a novel role for this histone/protein deacetylase as therapeutic target.

展开

关键词:

Hodgkin lymphoma SIRT1

DOI:

10.1002/ijc.27748

被引量:

87

年份:

2013

Wiley ResearchGate (全网免费下载)

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

引用走势

2016
被引量:18

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用