Equilibrium polymerization in the Stockmayer fluid as a model of supermolecular self-organization

阅读量:

16

作者:

KV WorkumJF Douglas

展开

摘要:

A diverse range of molecular self-organization processes arises from a competition between directional and isotropic van der Waals intermolecular interactions. We conduct Monte Carlo simulations of the Stockmayer fluid (SF) with a large dipolar interaction as a minimal self-organization model and focus on basic thermodynamic properties that are needed to characterize the polymerization transition that occurs in this fluid. In particular, we determine the polymerization transition lines from the maximum in the specific heat, C(v), and the inflection point in the extent of polymerization, Phi. We also characterize the geometry (radius of gyration R(g), chain length L, chain topology) of the clusters that form in this associating fluid as a function of temperature, T, and concentration, rho . The pressure, P, and the second virial coefficient, B2, were determined, since these properties contain essential information about the strength of the isotropic (van der Waals) interactions. Our simulations indicate that the locations of the polymerization lines are quantitatively consistent with a model of equilibrium polymerization with the enthalpy of polymerization ("sticking energy") fixed by the minimum in the intermolecular potential. The polymerization transition in the SF is accompanied by a topological transition from predominantly linear to ring polymers upon cooling that is driven by the minimization of the dipolar energy of the clusters. We also find that the basic interaction parameters describing polymerization and phase separation in the SF can be estimated based on the existing theory of equilibrium polymerization, but the theory must be refined to account for ring formation in order to accurately describe the configurational properties of this model self-organizing fluid.

展开

DOI:

10.1103/PhysRevE.71.031502

被引量:

92

年份:

2005

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用