Characterization of non-photochemically formed oligomers from methylglyoxal: a pathway to produce secondary organic aerosol through cloud processing during night-time

来自 EBSCO

阅读量:

45

作者:

F YasmeenN SauretJF GalM P.-CM Claeys

展开

摘要:

Aqueous-phase oligomer formation from methylglyoxal, a major atmospheric photooxidation product, has been investigated in a simulated cloud matrix under dark conditions. The aim of this study was to explore an additional path producing secondary organic aerosol (SOA) through cloud processes without photochemistry during night-time. Indeed, atmospheric models still underestimate SOA formation, as field measurements have revealed more SOA than predicted. Soluble oligomers (lt;igt;nlt;/igt;=1–8) formed in the course of acid-catalyzed aldol condensation and acid-catalyzed hydration followed by acetal formation have been detected and characterized by positive and negative ion electrospray ionization mass spectrometry. Aldol condensation proved to be a favorable mechanism under simulated cloud conditions, while hydration/acetal formation was found to strongly depend on the pH of the system. The aldol oligomer series starts with a β-hydroxy ketone via aldol condensation, where oligomers are formed by multiple additions of Clt;subgt;3lt;/subgt;Hlt;subgt;4lt;/subgt;Olt;subgt;2lt;/subgt; units (72 Da) to the parent β-hydroxy ketone. Ion trap mass spectrometry experiments were performed to structurally characterize the major oligomer species. A mechanistic pathway for the growth of oligomers under cloud conditions and in the absence of UV-light and OH radicals, which could substantially enhance in-cloud SOA yields, is proposed here for the first time.

展开

DOI:

10.5194/acpd-9-22993-2009

被引量:

98

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用