Silicic magma reservoirs in the Earth's crust

阅读量:

311

作者:

O BachmannC Huber

展开

摘要:

Magma reservoirs play a key role in controlling numerous processes in planetary evolution, including igneous differentiation and degassing, crustal construction, and volcanism. For decades, scientists have tried to understand what happens in these reservoirs, using an array of techniques such as field mapping/petrology/geochemistry/geochronology on plutonic and volcanic lithologies, geophysical imaging of active magmatic provinces, and numerical/experimental modeling. This review paper tries to follow this multi-disciplinary framework while discussing past and present ideas. We specifically focus on recent claims that magma columns within the Earth's crust are mostly kept at high crystallinity ("mush zones"), and that the dynamics within those mush columns, albeit modulated by external factors (e.g., regional stress field, rheology of the crust, pre-existing tectonic structure), play an important role in controlling how magmas evolve, degas, and ultimately erupt. More specifically, we consider how the chemical and dynamical evolution of magma in dominantly mushy reservoirs provides a framework to understand: (1) the origin of petrological gradients within deposits from large volcanic eruptions ("ignimbrites"); (2) the link between volcanic and plutonic lithologies; (3) chemical fractionation of magmas within the upper layers of our planet, including compositional gaps noticed a century ago in volcanic series (4) volatile migration and storage within mush columns; and (5) the occurrence of petrological cycles associated with caldera-forming events in long-lived magmatic provinces. The recent advances in understanding the inner workings of silicic magmatism are paving the way to exciting future discoveries, which, we argue, will come from interdisciplinary studies involving more quantitative approaches to study the crust-reservoir thermo-mechanical coupling as well as the kinetics that govern these open systems.

展开

DOI:

10.2138/am-2016-5675

被引量:

37

年份:

2016

相似文献

参考文献

引证文献

来源期刊

引用走势

2018
被引量:18

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用