The theory of a general quantum system interacting with a linear dissipative system
摘要:
A formalism has been developed, using Feynman's space-time formulation of nonrelativistic quantum mechanics whereby the behavior of a system of interest, which is coupled to other external quantum systems, may be calculated in terms of its own variables only. It is shown that the effect of the external systems in such a formalism can always be included in a general class of functionals (influence functionals) of the coordinates of the system only. The properties of influence functionals for general systems are examined. Then, specific forms of influence functionals representing the effect of definite and random classical forces, linear dissipative systems at finite temperatures, and combinations of these are analyzed in detail. The linear system analysis is first done for perfectly linear systems composed of combinations of harmonic oscillators, loss being introduced by continuous distributions of oscillators. Then approximately linear systems and restrictions necessary for the linear behavior are considered. Influence functionals for all linear systems are shown to have the same form in terms of their classical response functions. In addition, a fluctuation-dissipation theorem is derived relating temperature and dissipation of the linear system to a fluctuating classical potential acting on the system of interest which reduces to the Nyquist–Johnson relation for noise in the case of electric circuits. Sample calculations of transition probabilities for the spontaneous emission of an atom in free space and in a cavity are made. Finally, a theorem is proved showing that within the requirements of linearity all sources of noise or quantum fluctuation introduced by maser-type amplification devices are accounted for by a classical calculation of the characteristics of the maser.
展开
关键词:
Theoretical or Mathematical/ harmonic oscillators quantum theory space-time configurations/ quantum system linear dissipative system Feynman spacetime formulation nonrelativistic quantum mechanics influence functionals random classical forces finite temperatures formalism harmonic oscillators/ A0365G Solutions of wave equations: bound state in quantum theory A0240 Geometry, differential geometry, and topology A0365C Formalism in quantum theory
DOI:
10.1006/aphy.2000.6017
被引量:
年份:
2000





















通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!