Voltage-dependent changes in specific membrane capacitance caused by prestin, the outer hair cell lateral membrane motor
摘要:
In the outer hair cell (OHC), membrane capacitance principally derives from two components – that associated with lateral membrane sensor/motor charge movement, and that proportional to the membrane surface area ( C sa ). We used measures of membrane capacitance to test a model hypothesis that OHC lateral membrane molecular motors, recently identified as the protein prestin, fluctuate between two area states. By measuring membrane capacitance in native OHCs or prestin-transfected HEK cells at extreme voltages (±200mV) where motor-derived charge movement is small or absent, we observed that C sa depends on the state of the motors, or correspondingly on membrane voltage. Deiters cells or control HEK cells, which lack motors, do not show this dependence. We modeled the voltage-dependent change in C sa as a Boltzmann process with the same parameters that describe the charge movement of the motors' voltage sensors. C sa is 3.28±0.75pF (mean ±SD; n =23) larger during extreme hyperpolarization, and the number of motors in OHCs and prestin-transfected HEK cells correlates with the magnitude of Δ C sa ( r =0.78). Although these data are consistent with the area motor model, the corresponding area change, assuming 0.5F/cm 2 under constant membrane thickness, is unphysiologically large, and indicates that the capacitance change must result from changes not only in lateral membrane area but also specific capacitance. Thus, we conclude that a conformational change in the lateral membrane motor, prestin, additionally alters the dielectric constant and/or thickness of the lateral plasma membrane.
展开
DOI:
10.1007/s00424-002-0804-2
被引量:
年份:
2002

























通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!