Photocurable silicon-based materials for imprinting lithography
摘要:
Step and flash imprint lithography (SFIL) is low cost, high resolution patterning process and has found its way into a multitude of front end of the line (FEOL) and back end of the line (BEOL) applications. SFIL-R, a reverse tone variant of SFIL, and imprintable dielectrics are examples of such applications, and both require the design of specialized, silicon-based materials. Polyhedral oligomeric silsesquioxane (POSS) liquids were modified through a dual functionalization strategy to introduce photosensitive acrylate and thermally curable benzocyclobutane (BCB) groups to the molecule. The optimal functional group ratio was observed to be 3:5 acrylate to BCB, and the result was an imprintable dielectric with good mechanical properties and minimal post-exposure shrinkage. Thermal gravimetric analysis (TGA) revealed good thermal stability with minimal mass loss under annealing conditions of 400°C for 2 hours. Si-14 was designed to be a non-volatile, etch-resistant planarization layer for SFIL-R application. A polydimethylsiloxane (PDMS) derivative was modified to introduce acrylate functional groups and side branching for photosensitivity and low viscosity, respectively. Characterization of the material showed ideal planarization characteristics - low volatility (0.77 Torr at 25°C), low viscosity (15.1 cP), and minimal post-exposure shrinkage (5.1%).
展开
关键词:
Lithography Silicon Nanoimprint lithography Molecules Annealing Back end of line Dielectrics Front end of line
DOI:
10.1117/12.712261
被引量:
年份:
2016
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!