Corticosteroid resistance in chronic obstructive pulmonary disease: inactivation of histone deacetylase.

来自 NCBI

阅读量:

107

作者:

PJ BarnesK ItoIM Adcock

展开

摘要:

By contrast with patients with asthma, those with chronic obstructive pulmonary disease (COPD) are poorly responsive to the anti-inflammatory actions of corticosteroids, and these drugs provide little clinical benefit. In both diseases, multiple inflammatory genes are activated, which results from acetylation of core histones around which DNA is wound. This acetylation opens up the chromatin structure allowing gene transcription and synthesis of inflammatory proteins to proceed. Corticosteroids recruit histone deacetylase 2 (HDAC2) to the actively transcribing gene, which reverses this process and switches off inflammatory gene transcription. We propose that in patients with COPD, HDAC2 function is impaired by cigarette smoking and oxidative stress, leading to a pronounced reduction in responsiveness to corticosteroids. Oxidative stress could generate peroxynitrite, which impairs HDAC2 activity through nitration of critical tyrosine residues. This hypothesis raises the possibility that novel therapeutic approaches might unlock this corticosteroid resistance, leading to more effective anti-inflammatory treatments for COPD and other severe inflammatory diseases.

展开

DOI:

10.1016/S0140-6736(04)15650-X

被引量:

2020

年份:

2004

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用