Transition Metal-Catalyzed Carbocyclizations in Organic Synthesis.

阅读量:

126

作者:

I OjimaM TzamarioudakiZ LiRJ Donovan

展开

摘要:

Recent studies have indicated that the nephrotoxicity of fluoromethyl 2,2-difluoro-1-(trifluoromethyl)vinyl ether (''Compound A''), a breakdown product of the inhaled anesthetic sevoflurane, may be mediated by a reactive intermediate(s) generated via the cysteine conjugate beta-lyase pathway. In order to gain a better understanding of glutathione (GSH)-dependent metabolism of Compound A, the present study was carried out with the primary goal of detecting and characterizing Compound A-GSH conjugates. By means of ionspray LC-MSI MS and NMR spectroscopy, a total of four GSH conjugates (''A1-A4'') were identified from the bile of rats dosed intraperitoneally with Compound A. A1 and A2 were identified as two diastereomers of S-[1,1-difluoro-2-(fluoromethoxy)-2-(trifluoromethyl)ethyl]glutathione, while A3 and A4 were identified as (E)- and (Z)S-[1-fluoro-2-(fluoromethoxy)-2-(trifluoromethyl)-vinyl]glutathione, respectively. Quantitative analyses indicated that approximately 29% of the administered dose of Compound A was excreted into the bile in the form of the above GSH conjugates over a period of 6 h. Studies conducted in vitro demonstrated that the reaction of Compound A with GSH was catalyzed by both rat liver cytosolic and microsomal glutathione S-transferases (GST), with the two enzyme systems exhibiting different product selectivities. Formation of these GSH conjugates also occurred nonenzymatically at an appreciable rate. These results indicate that spontaneous and enzyme-mediated conjugation with GSH represents a major pathway of metabolism of Compound A in rats. Conjugation of Compound A with GSH in, vivo appeared to be catalyzed preferentially by microsomal rather than cytosolic GST, based on comparison of biliary, microsomal, and cytosolic metabolic profiles. By analogy with other haloalkenes, further metabolism of the corresponding cysteine conjugates of Compound A by renal cysteine conjugate beta-lyase may lead to the formation of reactive acylating agents, which would be expected to bind covalently to cellular macromolecules and cause organ-selective nephrotoxicity.

展开

DOI:

10.1021/cr950065y

被引量:

2492

年份:

1996

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2010
被引量:325

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用