Subunit Structure of a Mammalian ER/Golgi SNARE Complex
摘要:
SNAP receptor (SNARE) complexes bridge opposing membranes to promote membrane fusion within the secretory and endosomal pathways. Because only the exocytic SNARE complexes have been characterized in detail, the structural features shared by SNARE complexes from different fusion steps are not known. We now describe the subunit structure, assembly, and regulation of a quaternary SNARE complex, which appears to mediate an early step in endoplasmic reticulum (ER) to Golgi transport. Purified recombinant syntaxin 5, membrin, and rbet1, three Q-SNAREs, assemble cooperatively to create a high affinity binding site for sec22b, an R-SNARE. The syntaxin 5 amino-terminal domain potently inhibits SNARE complex assembly. The ER/Golgi quaternary complex is remarkably similar to the synaptic complex, suggesting that a common pattern is followed at all transport steps, where three Q-helices assemble to form a high affinity binding site for a fourth R-helix on an opposing membrane. Interestingly, although sec22b binds to the combination of syntaxin 5, membrin, and rbet1, it can only bind if it is present while the others assemble; sec22b cannot bind to a pre-assembled ternary complex of syntaxin 5, membrin, and rbet1. Finally, we demonstrate that the quaternary complex containing sec22b is not an entity only, but is a species in living cells.
展开
关键词:
Animals Humans Rats Endoplasmic Reticulum Golgi Apparatus Cell Line Cell Membrane Escherichia coli Glutathione Transferase Recombinant Fusion Proteins
DOI:
10.1074/jbc.M007684200
被引量:
年份:
2000
相似文献
参考文献
引证文献
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!