Predictive information and explorative behavior of autonomous robots

阅读量:

52

作者:

N AyN BertschingerR DerF GüttlerE Olbrich

展开

摘要:

Measures of complexity are of immediate interest for the field of autonomous robots both as a means to classify the behavior and as an objective function for the autonomous development of robot behavior. In the present paper we consider predictive information in sensor space as a measure for the behavioral complexity of a two-wheel embodied robot moving in a rectangular arena with several obstacles. The mutual information (MI) between past and future sensor values is found empirically to have a maximum for a behavior which is both explorative and sensitive to the environment. This makes predictive information a prospective candidate as an objective function for the autonomous development of such behaviors. We derive theoretical expressions for the MI in order to obtain an explicit update rule for the gradient ascent dynamics. Interestingly, in the case of a linear or linearized model of the sensorimotor dynamics the structure of the learning rule derived depends only on the dynamical properties while the value of the MI influences only the learning rate. In this way the problem of the prohibitively large sampling times for information theoretic measures can be circumvented. This result can be generalized and may help to derive explicit learning rules from complexity theoretic measures.

展开

DOI:

10.1140/epjb/e2008-00175-0

被引量:

233

年份:

2008

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2013
被引量:36

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用