Nanoparticle Coagulation in a Planar Jet

阅读量:

59

作者:

SE MillerSC Garrick

展开

摘要:

Direct numerical simulation of nanoparticle coagulation in a planar jet is performed. The particle field is represented using a sectional method to approximate the aerosol general dynamic equation. The methodology is advantageous in that there are no a priori assumptions regarding the particle size distribution and coupled with an unsteady Navier-Stokes solver, it provides the spatio-temporal evolution of the particle field in an accurate manner. The jet consists of an incompressible fluid containing particles 1 nm in diameter issuing into a particle-free coflowing stream. Ten sections are solved allowing the particle field to develop to 8 nm in diameter. Results show that the geometric standard deviation reaches the self-preserving value within one jet diameter downstream of the nozzle and remains at that value up to 7.5 jet diameters. In this proximal region, the particle size is relatively uniform throughout the jet. Further downstream, the effects of large-scale vortical structures is to increase the residence time of particles within the domain and perturb the geometric standard deviation beyond the self-preserving value.

展开

DOI:

10.1080/02786820490247669

被引量:

78

年份:

2004

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

引用走势

2011
被引量:12

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用