Gene expression analysis reveals matrilysin as a key regulator of pulmonary fibrosis in mice and humans
摘要:
Pulmonary fibrosis is a progressive and largely untreatable group of disorders that affects up to 100,000 people on any given day in the United States. To elucidate the molecular mechanisms that lead to end-stage human pulmonary fibrosis we analyzed samples from patients with histologically proven pulmonary fibrosis (usual interstitial pneumonia) by using oligonucleotide microarrays. Gene expression patterns clearly distinguished normal from fibrotic lungs. Many of the genes that were significantly increased in fibrotic lungs encoded proteins associated with extracellular matrix formation and degradation and proteins expressed in smooth muscle. Using a combined set of scoring systems we determined that matrilysin (matrix metalloproteinase 7), a metalloprotease not previously associated with pulmonary fibrosis, was the most informative increased gene in our data set. Immunohistochemisry demonstrated increased expression of matrilysin protein in fibrotic lungs. Furthermore, matrilysin knockout mice were dramatically protected from pulmonary fibrosis in response to intratracheal bleomycin. Our results identify matrilysin as a mediator of pulmonary fibrosis and a potential therapeutic target. They also illustrate the power of global gene expression analysis of human tissue samples to identify molecular pathways involved in clinical disease.
展开
关键词:
Usual Interstitial Pneumonia Microarray Analysis Informative Genes Bleomycin Matrix Metalloproteases Medical Sciences
DOI:
10.1073/pnas.092134099
被引量:
年份:
2002










































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!