Removal of Cu, Zn, and Cd from aqueous solutions by the dairy manure-derived biochar

来自 EBSCO

阅读量:

883

作者:

X XuX CaoZ LingH WangH YuB Gao

展开

摘要:

Biochar derived from waste biomass is now gaining much attention for its function as a biosorbent for environmental remediation. The objective of this study was to determine the effectiveness of biochar as a sorbent in removing Cd, Cu, and Zn from aqueous solutions.Biochar was produced from dairy manure (DM) at two temperatures: 200A degrees C and 350A degrees C, referred to as DM200 and DM350, respectively. The obtained biochars were then equilibrated with 0-5 mM Cu, Zn or Cd in 0.01 M NaNO3 solution for 10 h. The changes in solution metal concentrations after sorption were evaluated for sorption capacity using isotherm modeling and chemical speciation Visual MINTEQ modeling, while the solid was collected for species characterization using infrared spectroscopy and X-ray elemental dot mapping techniques.The isotherms of Cu, Zn, and Cd sorption by DM200 were better fitted to Langmuir model, whereas Freundlich model well described the sorption of the three metals by DM350. The DM350 were more effective in sorbing all three metals than DM200 with both biochars had the highest affinity for Cu, followed by Zn and Cd. The maximum sorption capacities of Cu, Zn, and Cd by DM200 were 48.4, 31.6, and 31.9 mg g(-1), respectively, and those of Cu, Zn, and Cd by DM350 were 54.4, 32.8, and 51.4 mg g(-1), respectively. Sorption of the metals by the biochar was mainly attributed to their precipitation with PO (4) (3-) or CO (3) (2-) originating in biochar, with less to the surface complexation through -OH groups or delocalized pi electrons. At the initial metal concentration of 5 mM, 80-100 % of Cu, Zn, and Cd retention by DM200 resulted from the precipitation, with less than 20 % from surface adsorption through phenonic -OH complexation. Among the precipitation, 20-30 % of the precipitation occurred as metal phosphate and 70-80 % as metal carbonate. For DM350, 75-100 % of Cu, Zn, and Cd retention were due to the precipitation, with less than 25 % to surface adsorption through complexation of heavy metal by phenonic -OH site or delocalized pi electrons. Among the precipitation, only less than 10 % of the precipitation was present as metal phosphate and more than 90 % as metal carbonate.Results indicated that dairy manure waste can be converted into value-added biochar as a sorbent for sorption of heavy metals, and the mineral components originated in the biochar play an important role in the biochar's high sorption capacity.

展开

DOI:

10.1007/s11356-012-0873-5

被引量:

282

年份:

2013

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

引用走势

2016
被引量:60

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用