Statistical convergence and ideal convergence for sequences of functions

阅读量:

77

作者:

M BalcerzakK DemsA Komisarski

展开

摘要:

Let I P ( N ) stand for an ideal containing finite sets. We discuss various kinds of statistical convergence and I-convergence for sequences of functions with values in R or in a metric space. For real valued measurable functions defined on a measure space ( X , M , μ ), we obtain a statistical version of the Egorov theorem (when μ ( X ) < ∞). We show that, in its assertion, equi-statistical convergence on a big set cannot be replaced by uniform statistical convergence. Also, we consider statistical convergence in measure and I-convergence in measure, with some consequences of the Riesz theorem. We prove that outer and inner statistical convergences in measure (for sequences of measurable functions) are equivalent if the measure is finite.

展开

DOI:

10.1016/j.jmaa.2006.05.040

被引量:

207

年份:

2007

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用