Unlike p53, p27 failed to exhibit an anti-tumor genetic interaction with Ku80

阅读量:

30

作者:

VB HolcombH VogelP Hasty

展开

摘要:

Ku80 is often referred to as a tumor suppressor since it maintains the genome by repairing DNA double-strand breaks (DSBs) via the nonhomologous end joining (NHEJ) pathway. Even though Ku80 deletion causes hypersensitivity to -radiation, DNA damage and chromosomal rearrangements, Ku80-mutant mice exhibit very low cancer levels. We previously hypothesized these low cancer levels were caused by enhanced cell cycle checkpoints that responded to inefficiently repaired DNA damage because Ku80-mutant fibroblasts exhibit premature cellular senescence that was dependent on a p53-mediated DNA damage response. In addition, Ku80 and p53 show a genetic interaction to suppress pro-B cell lymphoma and medulloblastoma. Here we tested for a similar anti-tumor genetic interaction between Ku80 and the cyclin kinase inhibitor, p27Kip1 (p27) since p27 mutant mice showed elevated levels of pituitary adenoma that were exacerbated by -radiation-induced DNA damage (damage repaired by Ku80). We found that deleting both Ku80 and p27 did not exacerbate cancer as compared to either single mutant. In addition, fibroblasts deleted for both exhibited premature cellular senescence similar to Ku80-mutant fibroblasts. Thus, p27 did not exhibit an obvious genetic interaction with Ku80 to suppress tumors. This observation suggests that DNA damage (or DNA damage responses) induced by either -radiation or Ku80 deletion are not equivalent since -radiation exacerbates oncogenesis in mice deleted for either p53 or p27 while Ku80 deletion exacerbates oncogenesis for only the former genotype.

展开

DOI:

10.4161/cc.8.15.9249

被引量:

5

年份:

2009

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2013
被引量:3

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用