Asymptotic motions and the problem of the inversion of the Lagrange-Dirichlet theory

作者:

VV Kozlov

展开

摘要:

The motion of natural mechanical systems tending to equilibrium with infinitely increasing time is investigated with particular reference to degenerate cases where several frequencies of small oscillations are reduced to zero. A proof is presented for a theorem on the existence of asymptotic trajectories assuming that Maclaurin's series of potential energy has the form V2 + Vm + V(m+1) + ... (where Vs is a homogeneous form of the exponent s) and that the function V2 + Vm does not have a local minimum in the equilibrium position. This theorem is then used to solve the problem of the existence of asymptotic trajectories in the case of simple and unimodal singularities of potential energy for which canonic normal forms are known.

展开

DOI:

10.1016/j.tetlet.2014.10.101

年份:

2014

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用