An experimental study of global instabilities due to the tidal (elliptical) distortion of a rotating elastic cylinder

阅读量:

33

作者:

MalkusVR Willem

展开

摘要:

Broad band secondary instability of elliptical vortex motion has been proposed as a principal source of shear-flow turbulence. Here experiments on such instability in an elliptical flow with no shear boundary layer are described. This is made possible by the mechanical distortion in the laboratory frame of a rotating fluid-filled elastic cylinder. One percent ellipticity of a 10 cm diameter cylinder rotating once each second can give rise to an exponentially-growing mode stationary in the laboratory frame. In first order this mode is a sub-harmonic parametric Faraday instability. The finite-amplitude equations represent angular momentum transfer on an inertial time scale due to Reynolds stresses. The growth of this mode is not limited by boundary friction but by detuning and centrifugal stabilization. On average, a generalized Richardson number achieves a marginal value through much of the evolved flow. However, the characteristic flow is intermittent with the cycle: rapid growth, stabilizing momentum transfer from the mean flow, interior re-spin up, and then again. Data is presented in which, at large Reynolds numbers, seven percent ellipticity causes a fifty percent reduction in the kinetic energy of the rotating fluid. In the geophysical setting, this tidal instability in the earth's interior could be inhibited by sub-adiabatic temperature gradients. A near adiabatic region greater than 10 km in height would permit the growth of tidally destabilized modes and the release of energy to three-dimensional disturbances. Such disturbances might play a central role in the geodynamo and add significantly to overall tidal dissipation.

展开

DOI:

10.1080/03091928908219529

被引量:

263

年份:

1989

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用