Human urinary carcinogen metabolites: biomarkers for investigating tobacco and cancer.

阅读量:

73

作者:

StephenSHecht

展开

摘要:

Measurement of human urinary carcinogen metabolites is a practical approach for obtaining important information about tobacco and cancer. This review presents currently available methods and evaluates their utility. Carcinogens and their metabolites and related compounds that have been quantified in the urine of smokers or non-smokers exposed to environmental tobacco smoke (ETS) include trans,trans-muconic acid (tt-MA) and S-phenylmercapturic acid (metabolites of benzene), 1- and 2-naphthol, hydroxyphenanthrenes and phenanthrene dihydrodiols, 1-hydroxypyrene (1-HOP), metabolites of benzo[a]pyrene, aromatic amines and heterocyclic aromatic amines, N-nitrosoproline, 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanol and its glucuronides (NNAL and NNAL-Gluc), 8-oxodeoxyguanosine, thioethers, mercapturic acids, and alkyladenines. Nitrosamines and their metabolites have also been quantified in the urine of smokeless tobacco users. The utility of these assays to provide information about carcinogen dose, delineation of exposed vs. non-exposed individuals, and carcinogen metabolism in humans is discussed. NNAL and NNAL-Gluc are exceptionally useful biomarkers because they are derived from a carcinogen- 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone (NNK)- that is specific to tobacco products. The NNAL assay has high sensitivity and specificity, which are particularly important for studies on ETS exposure. Other useful assays that have been widely applied involve quantitation of 1-HOP and tt-MA. Urinary carcinogen metabolite biomarkers will be critical components of future studies on tobacco and human cancer, particularly with respect to new tobacco products and strategies for harm reduction, the role of metabolic polymorphisms in cancer, and further evaluation of human carcinogen exposure from ETS.

展开

被引量:

456

年份:

2002

Semantic Scholar (全网免费下载) Oxford Univ Press Oxford Univ Press (全网免费下载)

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用