The Pore Size of Non-Graminaceous Plant Cell Walls Is Rapidly Decreased by Borate Ester Cross-Linking of the Pectic Polysaccharide Rhamnogalacturonan II
摘要:
The walls of suspension-cultured Chenopodium album L. cells grown continually for more than 1 year on B-deficient medium contained monomeric rhamnogalacturonan II (mRG-II) but not the borate ester cross-linked RG II dimer (dRG-II-B). The walls of these cells had an increased size limit for dextran permeation, which is a measure of wall pore size. Adding boric acid to growing B-deficient cells resulted in B binding to the wall, the formation of dRG-II-B from mRG-II, and a reduction in wall pore size within 10 min. The wall pore size of denatured B-grown cells was increased by treatment at pH ≤ 2.0 or by treatment with Ca2+-chelating agents. The acid-mediated increase in wall pore size was prevented by boric acid alone at pH 2.0 and by boric acid together with Ca2+, but not by Na+or Mg2+ions at pH 1.5. The Ca2+-chelator-mediated increase in pore size was partially reduced by boric acid. Our results suggest that B-mediated cross-linking of RG-II in the walls of living plant cells generates a pectin network with a decreased size exclusion limit for polymers. The formation, stability, and possible functions of a borate ester cross-linked pectic network in the primary walls of nongraminaceous plant cells are discussed.
展开
关键词:
biology and medicine, basic studies plant cells cell wall chemical composition membrane proteins borates esters cross-linking
DOI:
10.1104/pp.121.3.829
被引量:
年份:
1999
































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!