Steroidogenic Acute Regulatory Protein Binds Cholesterol and Modulates Mitochondrial Membrane Sterol Domain Dynamics

摘要:

The steroidogenic acute regulatory protein (StAR) mediates the rate-limiting step of steroidogenesis, delivery of cholesterol to the inner mitochondrial membrane. However, the mechanism whereby cholesterol translocation is accomplished has not been resolved. Recombinant StAR proteins lacking the first N-terminal 62 amino acids comprising the mitochondrial-targeting sequence were used to determine if StAR binds cholesterol and alters mitochondrial membrane cholesterol domains to enhance sterol transfer. First, a fluorescent NBD-cholesterol binding assay revealed 2 sterol binding sites (K(d) values near 32 nm), whereas the inactive A218V N-62 StAR mutant had only a single binding site with 8-fold lower affinity. Second, NBD-cholesterol spectral shifts and fluorescence resonance energy transfer from StAR Trp residues to NBD-cholesterol showed (i) close molecular interaction between these molecules (R(2/3) = 33 A) and (ii) sensitized NBD-cholesterol emission from only one of the two sterol binding sites. Third, circular dichroism showed that cholesterol binding induced a change in StAR secondary structure. Fourth, a fluorescent sterol transfer assay that did not require separation of donor and acceptor mitochondrial membranes demonstrated that StAR enhanced mitochondrial sterol transfer as much as 100-fold and induced/increased the formation of rapidly transferable cholesterol domains in isolated mitochondrial membranes. StAR was 67-fold more effective in transferring cholesterol from mitochondria of steroidogenic MA-10 cells than from human fibroblast mitochondria. In contrast, sterol carrier protein-2 (SCP-2) was only 2.2-fold more effective in mediating sterol transfer from steroidogenic cell mitochondria. Taken together these data showed that StAR is a cholesterol-binding protein, preferentially enhances sterol transfer from steroidogenic cell mitochondria, and interacts with mitochondrial membranes to alter their sterol domain structure and dynamics.

展开

DOI:

10.1074/jbc.M101939200

被引量:

816

年份:

2001

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用