Aspects of successful drug discovery and development

阅读量:

53

作者:

R Pauwels

展开

摘要:

Despite landmark achievements (e.g. >20 new anti-HIV drugs), a number of important therapeutic challenges remain. Although an expanding array of new drug discovery technologies has become available, drug research and development (R&D) productivity in general is still low. The establishment of close functional links between specialists active in early discovery, development and the clinic can thereby contribute to overall efficiency and higher success rates of new drug candidates. One of the more qualitative discovery challenges is to improve the predictability of early stage research models in term of in vivo drug efficacy. A cell-based model using viral replication in human T cells (MT-4) is used as an example from the HIV field to highlight the role of cell-based assays as tools for new target discovery, lead finding and optimization. The development of the next generation HIV non-nucleoside reverse transcriptase inhibitors (NNRTIs) TMC125 and TMC278 and the protease inhibitor (PI) TMC114 (Prezista), further point to new fundamental strategies to combat and prevent antiviral drug resistance and to the importance of incorporating clinical and pharmaceutical aspects into lead finding and optimization, drug design and drug candidate selection. A more parallel-oriented drug discovery strategy is thus portrayed that harnesses some 'evolutionary' principles in combination with technologies that are currently rationalizing drug discovery.

展开

DOI:

10.1016/j.antiviral.2006.05.007

被引量:

111

年份:

2006

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2009
被引量:24

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用