Increased mitochondrial mass in mitochondrial myopathy mice

阅读量:

87

摘要:

We have generated an animal model for mitochondrial myopathy by disrupting the gene for mitochondrial transcription factor A (Tfam) in skeletal muscle of the mouse. The knockout animals developed a myopathy with ragged-red muscle fibers, accumulation of abnormally appearing mitochondria, and progressively deteriorating respiratory chain function in skeletal muscle. Enzyme histochemistry, electron micrographs, and citrate synthase activity revealed a substantial increase in mitochondrial mass in skeletal muscle of the myopathy mice. Biochemical assays demonstrated that the increased mitochondrial mass partly compensated for the reduced function of the respiratory chain by maintaining overall ATP production in skeletal muscle. The increased mitochondrial mass thus was induced by the respiratory chain deficiency and may be beneficial by improving the energy homeostasis in the affected tissue. Surprisingly, in vitro experiments to assess muscle function demonstrated that fatigue development did not occur more rapidly in myopathy mice, suggesting that overall ATP production is sufficient. However, there were lower absolute muscle forces in the myopathy mice, especially at low stimulation frequencies. This reduction in muscle force is likely caused by deficient formation of force-generating actin-myosin cross bridges and/or disregulation of Ca2+homeostasis. Thus, both biochemical measurements of ATP-production rate and in vitro physiological studies suggest that reduced mitochondrial ATP production might not be as critical for the pathophysiology of mitochondrial myopathy as thought previously.

展开

关键词:

Medical Sciences

DOI:

10.1073/pnas.232591499

被引量:

519

年份:

2002

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用