Clinical Outcome Prediction by MicroRNAs in Human Cancer: A Systematic Review

阅读量:

78

作者:

VS NairLS MaedaIoannidis John P.A.

展开

摘要:

Background MicroRNA (miR) expression may have prognostic value for many types of cancers. However, the miR literature comprises many small studies. We systematically reviewed and synthesized the evidence. Methods Using MEDLINE (last update December 2010), we identified English language studies that examined associations between miRs and cancer prognosis using tumor specimens for more than 10 patients during classifier development. We included studies that assessed a major clinical outcome (nodal disease, disease progression, response to therapy, metastasis, recurrence, or overall survival) in an agnostic fashion using either polymerase chain reaction or hybridized oligonucleotide microarrays. Results Forty-six articles presenting results on 43 studies pertaining to 20 different types of malignancy were eligible for inclusion in this review. The median study size was 65 patients (interquartile range [IQR] = 34€"129), the median number of miRs assayed was 328 (IQR = 250€"470), and overall survival or recurrence were the most commonly measured outcomes (30 and 19 studies, respectively). External validation was performed in 21 studies, 20 of which reported at least one nominally statistically significant result for a miR classifier. The median hazard ratio for poor outcome in externally validated studies was 2.52 (IQR = 2.26€"5.40). For all classifier miRs in studies that evaluated overall survival across diverse malignancies, the miRs most frequently associated with poor outcome after accounting for differences in miR assessment due to platform type were let-7 (decreased expression in patients with cancer) and miR 21 (increased expression). Conclusions MiR classifiers show promising prognostic associations with major cancer outcomes and specific miRs are consistently identified across diverse studies and platforms. These types of classifiers require careful external validation in large groups of cancer patients that have adequate protection from bias. €"

展开

DOI:

10.1093/jnci/djs027

被引量:

321

相似文献

参考文献

引证文献

引用走势

2013
被引量:86

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用