Disposable chromatography for a high-throughput nano-ESI/MS and nano-ESI/MS-MS platform

阅读量:

30

作者:

JG WilliamsKB Tomer

展开

摘要:

High-throughput proteomics has typically relied on protein identification based on MALDI-MS peptide maps of proteolytic digests of 2D-gel-separated proteins. This technique, however, requires significant sequence coverage in order to achieve a high level of confidence in the identification. Tandem MS data have the advantage of requiring fewer peptides (2) for high confidence identification, assuming adequate MS/MS sequence coverage. MALDI-MS/MS techniques are becoming available, but can still be problematic because of the difficulty of inducing fragment ions of a singly charged parent ion. Electrospray ionization, however, has the advantage of generating multiply charged species that are more readily fragmented during MS/MS analysis. Two electrospray/tandem mass spectrometry-based approaches, nanovial-ESI-MS/MS and LC-MS/MS, are used for high throughput proteomics, but much less often than MALDI-MS and peptide mass fingerprinting. Nanovial introduction entails extensive manual manipulation and often shows significant chemical background from the in-gel digest. LC-MS has the advantages that the chemical background can be removed prior to analysis and the analytes are concentrated during the separation, resulting in more abundant analyte signals. On the other hand, LC-MS can often be time intensive. Here, we report the incorporation of on-line sample clean-up and analyte concentration with a high-throughput, chip-based, robotic nano-ESI-MS platform for proteomics studies.

展开

DOI:

10.1016/j.jasms.2004.06.007

被引量:

54

年份:

2004

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用