Oligonucleotide N-alkylphosphoramidates: synthesis and binding to polynucleotides

来自 ACS

阅读量:

29

作者:

A JagerMJ LevySM Hecht

展开

摘要:

A few different methods for the preparation of oligonucleotide N-alkylphosphoramidates were compared directly. One of these, involving the use of protected nucleoside phosphites as building blocks, provided the requisite N-alkylphosphoramidates via oxidation of the intermediate dinucleoside methyl phosphites with iodine in the presence of the appropriate alkylamine. This method was found to have several attractive features, including the use of building blocks identical with those employed for the synthesis of DNA and compatibility with procedures and instruments employed for the stepwise synthesis of oligonucleotides by solution and solid-phase methods. This procedure was used to make several di-, tri-, and tetranucleotide N-alkylphosphoramidates derived from deoxyadenosine and thymidine; alkyl substituents included N,N-dimethyl, N-butyl, N-octyl, N-dodecyl, and N-(5-aminopentyl). The oligonucleotide N-alkylphosphoramidates were separated into their component diastereomers and characterized structurally by a number of techniques including circular dichroism, high-field H NMR spectroscopy, FAB mass spectrometry, and enzymatic digestion to authentic nucleosides and nucleotides. Physicochemical characterization of several di- and trinucleotide alkylphosphoramidates revealed that the adenine nucleotide analogues formed stable complexes with poly(thymidylic acid). The stabilities of these complexes were found to increase with increasing chain length of the N-alkylphosphoramidate substituents. The finding that N-alkylphosphoramidate substituents can enhance the binding of certain oligonucleotides to their complementary polynucleotides suggests the existence of a novel source of polynucleotide affinity

展开

DOI:

10.1021/bi00419a010

被引量:

360

年份:

1988

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

引用走势

2010
被引量:31

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用