An in situ IR study of the NOx adsorption/reduction mechanism on modified Y zeolites
摘要:
The surface species formed during adsorption of NO, NO+O2 and NO2 on sodium and barium exchanged Y zeolites have been investigated by in situ IR spectroscopy. Ionically bound nitrates and nitrites on the exchanged metal cation sites are the main species formed during adsorption of NO and NO2. Extra framework alumina was identified as additional sorption site forming small concentrations of bridging, chelating and monodentate nitrates. N2O4 and NO+ were found to be reaction intermediates during the NOx adsorption process. The direct oxidation of NO2 with reactive oxygen from the zeolite surface is facilitated by the formation of nitrates via the disproportionation reaction of N2O4 to NO+ and NO3. NO+ was found to act as precursor for the creation of nitrites. Decomposition of the nitrate species occurs between 150 and 450°C. During the temperature increase less stable nitrite/nitrate species are transformed into Ba-nitrates showing the highest thermal stability. The stability of surface nitrates/nitrites was found to be lower, if NO instead of NO2 is present in the feed during temperature increase. For the interaction of surface NOx species with propene two pathways are proposed. At low temperatures, NO+ was identified as the active NOx surface species reacting with propene to nitriles. At higher temperatures the reduction of surface nitrates/nitrites occurred via organic nitro/nitrito species, carboxylic species and isocyanates.
展开
关键词:
DNA resistant and sensitive Carcinoma Guerina Wistar line rat strains SEIRA spectroscopy doxorubicin (DOX cis-platin phospholipid membrane
DOI:
10.1039/b209325a
被引量:
年份:
2003
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!