Causal diagrams for empirical research C^-j-h di^^i^)

阅读量:

84

摘要:

SUMMARY The primary aim of this paper is to show how graphical models can be used as a mathematical language for integrating statistical and subject-matter information. In par- ticular, the paper develops a principled, nonparametric framework for causal inference, in which diagrams are queried to determine if the assumptions available are sufficient for identifying causal effects from nonexperimental data. If so the diagrams can be queried to produce mathematical expressions for causal effects in terms of observed distributions; otherwise, the diagrams can be queried to suggest additional observations or auxiliary experiments from which the desired inferences can be obtained.

展开

DOI:

10.1093/biomet/82.4.690

被引量:

213

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

来源期刊

Biometrika
01/1995

引用走势

2012
被引量:23

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用