Modelling and segmentation of textured images using Gibbs random fields
摘要:
This paper presents a new approach to the use of Gibbs distributions (GD) for modeling and segmentation of noisy and textured images. Specifically, the paper presents random field models for noisy and textured image data based upon a hierarchy of GD. It then presents dynamic programming based segmentation algorithms for noisy and textured images, considering a statistical maximum a posteriori (MAP) criterion. Due to computational concerns, however, sub-optimal versions of the algorithms are devised through simplifying approximations in the model. Since model parameters are needed for the segmentation algorithms, a new parameter estimation technique is developed for estimating the parameters in a GD. Finally, a number of examples are presented which show the usefulness of the Gibbsian model and the effectiveness of the segmentation algorithms and the parameter estimation procedures.
展开
关键词:
Computer vision estimation of parameters in Gibbs distributions Gibbs distributions Gibbs random fields image processing image segmentation Markov random fields textured image segmentation texture modeling
DOI:
10.1109/TPAMI.1987.4767871
被引量:
年份:
1987
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!