Behavioral genomics of honeybee foraging and nest defense
摘要:
We superimposed confidence intervals (CIs) with genomic sequence for seven confirmed honey bee quantitative trait loci (QTLs) influencing foraging division of labor (pollen or nectar collecting) and nest defense (stinging and guarding). The high recombination rate of the bee allowed us to narrow the search for genes influencing behavior to regions of 18-52 predicted genes for each QTL. We used a priori knowledge of each behavioral syndrome, comparative bioinformatics and expression data to direct analyses of gene candidates. An over-representation of genes involved in ovarian development and insulin-like signaling components were found within pollen foraging QTL regions, suggesting that an ancestral reproductive gene network was co-opted to produce foraging specialization. In addition, we hypothesized that conserved genes involved in central nervous system (CNS) function and sensory tuning would be involved in defensive behavior. The major locus influencing defensive behavior included orthologs of genes involved in CNS activity and neurogenesis. Candidates at the other two defensive-behavior QTLs includ modulators of sensory signaling (the Am5HT7 serotonin receptor, arrestin and the GABA B1 receptor). This study is the first step in linking natural variation in honey bee behavior to the identification of underlying genes. Due to high recombination rates, CIs encompassing large genetic distances are equivalent to fine-scale mapping in the honey bee.
展开
被引量:
年份:
2007
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!