Bioadhesive properties of hydroxypropylcellulose topical films produced by hot-melt extrusion

阅读量:

40

作者:

MA RepkaJW Mcginity

展开

摘要:

The objective of this study was to investigate the in vivo bioadhesive properties of hydroxypropylcellulose (HPC) films containing seven polymer additives on the epidermis of 12 human subjects, including two ethnic sub-groups. HPC films containing polyethylene glycol (PEG 3350) alone, Vitamin E TPGS (TPGS) 5%, sodium starch glycolate 5%, Eudragit E-100 5%, carbomer 974P and 971P 5%, and polycarbophil 5%, all with and without plasticizer, were prepared by hot-melt extrusion utilizing a Randcastle Microtruder ® (Model #RCP-0750). Bioadhesion testing was performed using a Chatillon digital force gauge DFGS50 attached to a Chatillon TCD-200 motorized test stand to determine force of adhesion (FA), elongation at adhesive failure (EAF), and modulus of adhesion (MA) for the 12 films tested. In vivo, the TPGS-incorporated film exhibited a two-fold increase in FA when compared to the control film containing the PEG 3350 5%. The carbomer 971P and polycarbophil containing films were determined to have the highest FA and EAF, and the lowest MA of all films tested. The film containing carbomer 971P had a higher FA than the film containing 974P. In addition, films in one ethnic sub-group exhibited higher FA and EAF than the other. Force–deflection profiles obtained from these experiments indicate that the force of adhesion, elongation at adhesive failure and modulus of adhesion are a function of the polymer additive in the HPC extruded films. The incorporation of carbomer 971P and a polycarbophil into HPC films increased bioadhesion significantly when compared to the film containing HPC and PEG 3350. Differences in FA and EAF were discovered between two ethnic sub-groups tested.

展开

DOI:

10.1016/S0168-3659(00)00365-5

被引量:

233

年份:

2001

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用