Phosphorylation of Insulin Receptor Substrate-1 on Multiple Serine Residues, 612, 632, 662, and 731, Modulates Insulin Action

阅读量:

49

作者:

Van ObberghenE.

展开

摘要:

Okadaic acid has been described previously as being a negative regulator of insulin signaling, as it inhibits insulin stimulation of glucose transport. In addition, this drug induces on insulin receptor substrate-1 (IRS-1) a decrease in tyrosine phosphorylation, concomitantly with an increase in serine/threonine phosphorylation. The present work was aimed at the identification of the serine/threonine residues that, upon phosphorylation, might be involved in modulating insulin signaling. To this end, we studied double-point mutants of IRS-1, in which serines 612/632 and 662/731 were replaced with alanine. These are four plausible sites of phosphorylation by mitogen-activated protein kinases and are in the immediate proximity of tyrosine residues, which are potential sites of interaction with phosphatidylinositol 3-kinase Src homology 2 domains. Using transient expression in 293 EBNA cells, we demonstrate that serines 612, 632, 662, and 731 and mitogen-activated protein kinases are not involved in the okadaic acid effect on IRS-1. Rather, these serines appear to play a role in modulating basal and insulin-stimulated IRS-1 tyrosine phosphorylation, association of IRS-1, with p85, and phosphatidylinositol 3-kinase activity in the IRS-1.p85 immune complex, since mutation of these sites enhances these events. Our findings suggest the existence of an IRS-1 desensitization mechanism resulting from serine/threonine phosphorylation, occurring at least on serines 612, 632, 662, and 731.

展开

DOI:

10.1074/jbc.271.19.11222

被引量:

622

年份:

1996

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用