Molecular characterization of a transcriptionally active Ty1/copia -like retrotransposon in Gossypium

来自 NCBI

阅读量:

35

作者:

YuefenCaoYurongJiangMingquanDingShaeHeHuaZhang

展开

摘要:

Key message A transcriptionally active Ty1/ copia -like retrotransposon was identified in the genome of Gossypium barbadense . The different heat activation of this element was observed in two tetraploid cotton species. Most retrotransposons from plants are transcriptionally silent, or activated under certain conditions. Only a small portion of elements are transcriptionally active under regular condition. A long terminal repeat (LTR) retrotransposon was isolated from the cultivated Sea Island cotton (H7124) genome during the investigation of the function of a homeodomain leucine zipper gene (HD1) in trichome growth. Insertion of this element in HD1 gene of At sub-genome was related to the trichomeless stem in Gossypium barbadense. The element, named as GBRE-1, had all features of a typical Ty1/copia retrotransposon and possessed high similarity to the members of ONSEN retrotransposon family. It was 4997 bp long, comprising a single 4110 bp open reading frame, which encoded 1369 amino acids including the conserved domains of gag and pol. The expression of GBRE-1 was detected under regular condition in G. barbadense and G. hirsutum, and its expression level was increased under heat-stress condition in G. hirsutum. Besides, its expression pattern was similar to that of the ONSEN retrotransposon. Abundant cis-regulatory motifs related to stress-response and transcriptional regulation were found in the LTR sequence. These results suggested that GBRE-1 was a transcriptionally active retrotransposon in Gossypium. To our knowledge, this is the first report of the isolation of a complete Ty1/copia-type retrotransposon with present-day transcriptional activity in cotton.

展开

DOI:

10.1007/s00299-015-1763-3

被引量:

12

年份:

2015

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用