A quantitative study of atropine-resistant contractile responses in human detrusor smooth muscle, from stable, unstable and obstructed bladders.

阅读量:

59

作者:

M BaylissC WuD NewgreenAR MundyCH Fry

展开

摘要:

The objective of the study was to quantify in vitro the magnitude of atropine-resistant contractions using human detrusor samples and to determine the cellular processes underlying these contractions. Isometric contractile responses were measured in isolated strips of human detrusor muscle obtained from patients with i) stable, ii) unstable or iii) obstructed bladders. Preparations were electrically stimulated or exposed to carbachol and ATP in the superfusate. Force-frequency curves were shifted to the right in samples from unstable and obstructed bladders. These same tissue groups also showed significant atropine-resistant contractions which were abolished by the neurotoxin TTX, or the non-hydrolysable ATP analog, alpha,beta-methylene ATP, suggesting that these contractions were mediated by neurally released ATP. Sub-division of the patient group with unstable bladders demonstrated that those with neuropathic instability did not show atropine-resistance, whereas those with idiopathic instability or secondary instability after obstruction did show atropine-resistant contractions. The potency of carbachol in generating a contracture was significantly greater than ATP (mean EC50 0.65 microM and 151 microM respectively) however, for each agonist there was no difference in potency between the three patient groups. Direct muscle excitability was similar in all three patient groups. It is concluded that purinergic, atropine-resistant contractions are present in some types of dysfunctional bladder, and these are not caused by a differential sensitivity of the muscle to ATP and cholinergic agonists.

展开

DOI:

10.1016/S0022-5347(05)68247-X

被引量:

533

年份:

1999

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用