Mott physics and band topology in materials with strong spin–orbit interaction
摘要:
Recent theory and experiment have revealed that strong spin–orbit coupling can have marked qualitative effects on the band structure of weakly interacting solids, leading to a distinct phase of matter, the topological band insulator. We show that spin–orbit interaction also has quantitative and qualitative effects on the correlation-driven Mott insulator transition. Taking Ir-based pyrochlores as a specific example, we predict that for weak electron–electron interaction Ir electrons are in metallic and topological band insulator phases at weak and strong spin–orbit interaction, respectively. We show that by increasing the electron–electron interaction strength, the effects of spin–orbit coupling are enhanced. With increasing interactions, the topological band insulator is transformed into a 'topological Mott insulator' phase having gapless surface spin-only excitations. The proposed phase diagram also includes a region of gapless Mott insulator with a spinon Fermi surface, and a magnetically ordered state at still larger electron–electron interaction.
展开
DOI:
10.1038/nphys1606
被引量:









































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!