Mott physics and band topology in materials with strong spin–orbit interaction

来自 EBSCO

阅读量:

159

作者:

D PesinL Balents

展开

摘要:

Recent theory and experiment have revealed that strong spin–orbit coupling can have marked qualitative effects on the band structure of weakly interacting solids, leading to a distinct phase of matter, the topological band insulator. We show that spin–orbit interaction also has quantitative and qualitative effects on the correlation-driven Mott insulator transition. Taking Ir-based pyrochlores as a specific example, we predict that for weak electron–electron interaction Ir electrons are in metallic and topological band insulator phases at weak and strong spin–orbit interaction, respectively. We show that by increasing the electron–electron interaction strength, the effects of spin–orbit coupling are enhanced. With increasing interactions, the topological band insulator is transformed into a 'topological Mott insulator' phase having gapless surface spin-only excitations. The proposed phase diagram also includes a region of gapless Mott insulator with a spinon Fermi surface, and a magnetically ordered state at still larger electron–electron interaction.

展开

DOI:

10.1038/nphys1606

被引量:

501

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2013
被引量:97

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用