collier, a novel regulator of Drosophila head development, is expressed in a single mitotic domain

阅读量:

165

作者:

M CrozatierD ValleL DuboisS IbnsoudaA Vincent

展开

摘要:

Background: Segmentation of the Drosophila embryo is based on a cascade of hierarchical gene interactions that is initiated by maternal morphogens; these interactions define spatially restricted domains of zygotic gene expression within the blastoderm. Although the hierarchy of the segmentation genes that subdivide the trunk is well established, the patterning of the head is less well understood. Seven head segments can be assigned on the basis of metameric patterns of segment-polarity gene expression and internal sensory organs. The domains of expression of head gap-like genes broadly overlap, with their posterior margins out of phase by one segment. Taken together with the lack of pair-rule gene expression in the head, these observations led to the suggestion that head gap genes act in a combinatorial manner, determining head segmental borders and segmental identity at the same time. Results: We have identified a new Drosophila gene, collier (col), whose expression at the blastoderm stage is restricted to a single stripe of cells corresponding to part of the intercalary and mandibular segment primordia, possibly parasegment O. Reduction of col activity in early gastrula embryos by antisense RNA expression results in a specific lack of head structures derived from these segments. The expression of col coincides with a mitotic domain, which supports the proposal that cells in this domain undergo a concerted mitotic and differentiation program that is orchestrated at the transcriptional level. Col is an ortholog of mammalian early B-cell factor/Olfactory-1. These proteins define a new family of transcription factors that contain a helix-loop-helix dimerization motif and a new type of DNA-binding domain that is highly conserved during evolution. Conclusions: Here we describe Col, the first Drosophila member of a new family of transcription factors. Col may act as a 'second-level regulator' of head patterning. The structural conservation of Col during evolution raises the questions of its conservation of function in head specification and its interactions with other factors conserved between insects and vertebrates.

展开

DOI:

10.1016/s0960-9822(09)00452-7

被引量:

206

年份:

1996

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

研究点推荐

引用走势

2002
被引量:19

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用