Application of advanced statistical methods for extracting long-term trends in static monitoring data from an arch dam

作者:

CH LohCH ChenTY Hsu

展开

摘要:

The objective of this article is to develop methods for extracting trends from long-term structural health monitoring data and try to set an early warning threshold level based on the results of analyses. The long-term monitoring data in this study is the continuous monitoring of the dam static deformation. Two different approaches were applied to extract features of the long-term structural health monitoring data of the static deformation of the Fei-Tsui Arch Dam (Taiwan). The methods include the singular spectrum analysis with auto regressive model (SSA-AR) and the nonlinear principal component analysis (NPCA) using auto-associative neural network method (AANN). The singular spectrum analysis is a novel nonparametric technique based on principles of multi-variance statistics. An AR model is optimized for each of the principal components obtained from SSA, and the multi step predicted values are recombined to make the time series. Different from SSA method the NPCA-AANN method is also used to extract the underlying features of static deformation of the dam. By using these two different methods, the residual deformation between the estimated and the recorded data was generated, through statistical analysis, the threshold level of the dam static deformation can be determined. Discussion on the two proposed methods to the static deformation monitoring data of Fei-Tsui Arch Dam (Taiwan) is discussed.

展开

DOI:

10.1177/1475921710395807

被引量:

39

年份:

2011

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用