On the motion of a rigid body in a two-dimensional ideal flow with vortex sheet initial data

阅读量:

39

作者:

SueurFranck

展开

摘要:

A famous result by Delort about the two-dimensional incompressible Euler equations is the existence of weak solutions when the initial vorticity is a bounded Radon measure with distinguished sign and lies in the Sobolev space H-1. In this paper we are interested in the case where there is a rigid body immersed in the fluid moving under the action of the fluid pressure. We succeed to prove the existence of solutions a la Delort in a particular case with a mirror symmetry assumption already considered by Lopes Filho et al. (2006) [11], where it was assumed in addition that the rigid body is a fixed obstacle. The solutions built here satisfy the energy inequality and the body acceleration is bounded. When the mass of the body becomes infinite, the body does not move anymore and one recovers a solution in the sense of Lopes Filho et al. (2006) [11]. (C) 2012 Elsevier Masson SAS. All rights reserved.

展开

DOI:

10.1016/j.anihpc.2012.09.001

被引量:

16

年份:

2013

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

引用走势

2014
被引量:8

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用