Non-destructive inspection of Chinese pear quality based on hyperspectral imaging technique

来自 知网

阅读量:

76

作者:

T HongJ QiaoW NingMO NgadiZ Li

展开

摘要:

Non-destructive inspection of the interior and exterior quality of fruit has always been a research topic because many subjective assessing methods limited to the exterior measurements with poor repeatability and tedious procedures are still widely used. In this study, a hyperspectral-imaging technique was developed to realize a fast, accurate and objective grading of Chinese pears. The morphological features and spectral responses on sugar and water content can be extracted simultaneously. The feature wavelengths for water content prediction(462, 502, 592, 706 and 957 nm) and for sugar content prediction(500, 703, 816, 875 and 920 nm) were selected based on partial least squares analysis. Artificial Neural Network was engaged to establish the prediction model for the water and sugar contents. The results show that the ANN model could predict water and sugar contents of pear samples with correlation coefficient of 0.996 and 0.94, respectively. RMSEP was 4.24% for water content and 0.5°Brix for sugar content. For weight prediction, the correlation coefficient between predicted and real weight was 0.93.

展开

被引量:

133

年份:

2007

通过文献互助平台发起求助,成功后即可免费获取论文全文。

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用