Evolution of genetic redundancy.
摘要:
Genetic redundancy means that two or more genes are performing the same function and that inactivation of one of these genes has little or no effect on the biological phenotype. Redundancy seems to be widespread in genomes of higher organisms. Examples of apparently redundant genes come from numerous studies of developmental biology, immunology, neurobiology and the cell cycle. Yet there is a problem: genes encoding functional proteins must be under selection pressure. If a gene was truly redundant then it would not be protected against the accumulation of deleterious mutations. A widespread view is therefore that such redundancy cannot be evolutionarily stable. Here we develop a simple genetic model to analyse selection pressures acting on redundant genes. We present four cases that can explain why genetic redundancy is common. In three cases, redundancy is even evolutionarily stable. Our theory provides a framework for exploring the evolution of genetic organization.
展开
关键词:
Animals Evolution, Molecular Genes physiology Genotype Models, Genetic Research Support, Non-U.S. Gov't Selection (Genetics)
DOI:
10.1038/40618
被引量:
年份:
1997
































































通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!