Transfection efficiency and intracellular fate of polycation liposomes combined with protamine

阅读量:

85

作者:

J ChenZ YuH ChenJ GaoW Liang

展开

摘要:

Endosomal escape and nuclear entry are the two main barriers for successful non-viral gene delivery. To overcome these barriers, polyethylenimine (PEI) with a molecular weight of 800, conjugated to cholesterol (PEI 800-Chol) was synthesized to prepare polycation liposomes (PCLs). The effect of cationic polymers on transfection was investigated by pre-condensing DNA with these before using PCLs. The complexes of PCLs and protamine/DNA nanoparticles (PLPD) were introduced as efficient gene transfer vectors, and displayed obviously higher transfection efficiency (approximately 39-fold) than PCLs/DNA complexes. Kinetics of transgene expression indicated PLPD complexes could be maintained at a relatively high level over 72h. The order of protamine addition affected the transfection of PLPD complexes. Pre-mixed and post-mixed PLPD complexes improved transfection, although the former was preferred. Distribution of FAM-labeled oligonucleotides (FAM-ODN) in cells mediated by PCLs were throughout the whole cell, while most FAM-ODN were nuclear when transfected with PLPD. These results suggest that the protonation of PEI and membrane destabilization of 1, 2-Dioleoyl- sn-glycero-3-phosphoethanolamine (DOPE) increases the endosomal escape ability of vectors. The addition of protamine, containing nuclear localization signals, improved nuclear entry of DNA. The internalization pathways for PCLs involved multiple processes and were possibly dependent on cell lines.

展开

DOI:

10.1016/j.biomaterials.2010.09.074

被引量:

66

年份:

2011

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

引用走势

2013
被引量:17

站内活动

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用