Removal of metal ions using lignite in aqueous solution—Low cost biosorbents

阅读量:

44

作者:

E PehlivanG Arslan

展开

摘要:

Turkish lignite can be used as a new adsorption material for removing some toxic metals from aqueous solution. The adsorption of lignite (brown young coals) to remove copper (Cu2+), lead (Pb2+), and nickel (Ni2+) from aqueous solutions was studied as a function of pH, contact time, metal concentration and temperature. Adsorption equilibrium was achieved between 40 and 70 min for all studied cations except Pb2+, which is between 10 and 30 min. The adsorption capacities are 17.8 mg/g for Cu2+, 56.7 mg/g for Pb2+, 13.0 mg/g for Ni2+ for BC1 (Ilgn lignite) and 18.9 mg/g for Cu2+, 68.5 mg/g for Pb2+, 12.0 mg/g for Ni2+ for BC2 (Beysehir lignite) and 7.2 mg/g for Cu2+, 62.3 mg/g for Pb2+, 5.4 mg/g for Ni2+ for AC (activated carbon). More than 67% of studied cations were removed by BC1 and 60% BC2, respectively from aqueous solution in single step. Whereas about 30% of studied cations except Pb2+, which is 90%, were removed by activated carbon. Effective removal of metal ions was demonstrated at pH values of 3.8–5.5. The adsorption isotherms were measured at 20 °C, using adsorptive solutions at the optimum pH value to determine the adsorption capacity. The Langmuir adsorption isotherm was used to describe observed sorption phenomena. The rise in temperature caused a slight decrease in the value of the equilibrium constant (Kc) for the sorption of metal ions. The mechanism for cations removal by the lignite includes ion exchange, complexation and sorption. The process is very efficient especially in the case of low concentrations of pollutants in aqueous solution, where common methods are either economically unfavorable or technically complicated.

展开

DOI:

10.1016/j.fuproc.2006.09.004

被引量:

142

年份:

2007

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

来源期刊

研究点推荐

引用走势

2013
被引量:24

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

引用