Alternative pathways of carbon dioxide fixation: insights into the early evolution of life?
摘要:
The fixation of inorganic carbon into organic material (autotrophy) is a prerequisite for life and sets the starting point of biological evolution. In the extant biosphere the reductive pentose phosphate (Calvin-Benson) cycle is the predominant mechanism by which many prokaryotes and all plants fix CO(2) into biomass. However, the fact that five alternative autotrophic pathways exist in prokaryotes is often neglected. This bias may lead to serious misjudgments in models of the global carbon cycle, in hypotheses on the evolution of metabolism, and in interpretations of geological records. Here, I review these alternative pathways that differ fundamentally from the Calvin-Benson cycle. Revealingly, these five alternative pathways pivot on acetyl-coenzyme A, the turntable of metabolism, demanding a gluconeogenic pathway starting from acetyl-coenzyme A and CO(2). It appears that the formation of an activated acetic acid from inorganic carbon represents the initial step toward metabolism. Consequently, biosyntheses likely started from activated acetic acid and gluconeogenesis preceded glycolysis.
展开
关键词:
autotrophy chemical evolution carbon metabolism carboxylases origin of life prebiotic chemistry
DOI:
10.1146/annurev-micro-090110-102801
被引量:
年份:
2011
相似文献
参考文献
引证文献
来源期刊
引用走势
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!