Variational transition state theory calculations of tunneling effects on concerted hydrogen motion in water clusters and formaldehyde/water clusters
摘要:
The direct participation of water molecules in aqueous phase reaction processes has been postulated to occur via both single-step mechanisms as well as concerted hydrogen atom or proton shifts. In the present work, simple prototypes of concerted hydrogen atom transfer processes are examined for small hydrogen-bonded water clusters -- cyclic trimers and tetramers -- and hydrogen-bonded clusters of formaldehyde with one and two water molecules. Rate constants for the rearrangement processes are computed using variational transition state theory, accounting for quantum mechanical tunneling effects by semiclassical ground-state adiabatic transmission coefficients. The variational transition state theory calculations directly utilize selected information about the potential energy surface along the minimum energy path as parameters of the reaction path Hamiltonian. The potential energy information is obtained from ab ignite electronic structure calculations with an empirical bond additivity correction (the BAC-MP4 method). Tunneling is found to be very important for these concerted rearrangement processes -- the semiclassical ground-state adiabatic transmission coefficients are estimated to be as high as four order of magnitude at room temperature. Effects of the size of the cluster (number of water molecules in the cyclic complex) are also dramatic -- addition of a water molecule is seen to change the
展开
关键词:
Formaldehyde Hydrogen Transfer Bond Angle Bond Lengths Computer Calculations Dimers Electronic Structure Hydrolysis Molecular Structure Molecules Potential Energy Tunnel Effect Variational Methods Water
DOI:
10.1007/978-94-011-3584-9_3
被引量:
年份:
1991
通过文献互助平台发起求助,成功后即可免费获取论文全文。
相似文献
参考文献
引证文献
辅助模式
引用
文献可以批量引用啦~
欢迎点我试用!