Fluorimetric determination of D-lactate in urine of normal and diabetic rats by column-switching high-performance liquid chromatography

作者:

JA LeeYC TsaiHY ChenCC WangSM ChenT FukushimaK Imai

展开

摘要:

A highly sensitive method for the fluorimetric determination of d-lactate in urine of normal and diabetic rats was developed using column-switching high-performance liquid chromatography (HPLC) with an octadecylsilica (ODS) column connected to a chiral column, an amylose tris(3,5-dimethylphenylcarbamate) coated on silica gel (Chiralpak AD-RH). During the separation step on the ODS column, the peak fraction of the ( d+ l)-lactate derivative with a fluorescence reagent, 4-nitro-7-piperazino-2,1,3-benzoxadiazole (NBD-PZ), was introduced directly to the chiral column by changing the flow of the eluent via a six-port valve. The d-lactate derivative was separated enantiomerically from the l-lactate derivative, and the enantiomeric ratio was determined from the chromatogram. The accuracy values for the determination of d-lactate in 20 μL of rat urine were 96.93–104.85%, and the intra- and inter-day precision values were within 0.80 and 14.44%, respectively. The detection limit for d-lactate was approximately 10 nM (with a signal-to-noise ratio of 3). The proposed HPLC method was applied to the urine of normal and diabetic rats induced by intraperitoneal administration of streptozotocin, and significant increases in d-lactate excreted into the urine were observed in diabetic rats compared to normal rats. In diabetic rats, d-lactate concentrations showed a rising tendency from the seventh day and then remained stable from the 28th day after induction, suggesting that urinary d-lactate may be used as an indicator to determine the diabetic stage and the level of kidney damage.

展开

DOI:

10.1016/j.aca.2004.11.033

被引量:

48

年份:

2005

通过文献互助平台发起求助,成功后即可免费获取论文全文。

我们已与文献出版商建立了直接购买合作。

你可以通过身份认证进行实名认证,认证成功后本次下载的费用将由您所在的图书馆支付

您可以直接购买此文献,1~5分钟即可下载全文,部分资源由于网络原因可能需要更长时间,请您耐心等待哦~

身份认证 全文购买

相似文献

参考文献

引证文献

辅助模式

0

引用

文献可以批量引用啦~
欢迎点我试用!

关于我们

百度学术集成海量学术资源,融合人工智能、深度学习、大数据分析等技术,为科研工作者提供全面快捷的学术服务。在这里我们保持学习的态度,不忘初心,砥砺前行。
了解更多>>

友情链接

百度云百度翻译

联系我们

合作与服务

期刊合作 图书馆合作 下载产品手册

©2025 Baidu 百度学术声明 使用百度前必读

引用